Integration of ATP, cAMP, and Ca2+ signals in insulin granule exocytosis.
نویسندگان
چکیده
Intracellular ATP, cAMP, and Ca2+ are major signals involved in the regulation of insulin secretion in the pancreatic beta-cell. We recently found that the ATP-sensitive K+ channel (KATP channel) as an ATP sensor, cAMP-GEFII as a cAMP sensor, Piccolo as a Ca2+ sensor, and L-type voltage-dependent Ca2+ channel (VDCC) can interact with each other. In the present study, we examined the effects of cAMP and ATP on the interaction of cAMP-GEFII and sulfonylurea receptor-1 (SUR1). Interaction of cAMP-GEFII with SUR1 was inhibited by the cAMP analog 8-bromo-cAMP but not by ATP, and the inhibition by 8-bromo-cAMP persisted in the presence of ATP. In addition, SUR1, cAMP-GEFII, and Piccolo could form a complex. Piccolo also interacted with the alpha1 1.2 subunit of VDCC in a Ca2+-independent manner. These data suggest that the interactions of the KATP channel, cAMP-GEFII, Piccolo, and L-type VDCC are regulated by intracellular signals such as cAMP and Ca2+ and that the ATP, cAMP, and Ca2+ signals are integrated at a specialized region of pancreatic beta-cells.
منابع مشابه
Granule-specific ATP requirements for Ca2+-induced exocytosis in human neutrophils. Evidence for substantial ATP-independent release.
Ca2+-induced exocytosis in neuronal and neuroendocrine cells involves ATP-dependent steps believed to 'prime' vesicles for exocytosis. Primed, docked vesicles are released in response to Ca2+ influx through voltage-gated Ca2+ channels. Neutrophils, however, do not possess voltage-gated Ca2+ channels and appear to have no docked vesicles. Furthermore, neutrophils have several types of granules w...
متن کاملRegulation of exocytosis by purinergic receptors in pancreatic duct epithelial cells.
In epithelial cells, several intracellular signals regulate the secretion of large molecules such as mucin via exocytosis and the transport of ions through channels and transporters. Using carbon fiber amperometry, we previously reported that exocytosis of secretory granules in dog pancreatic duct epithelial cells (PDEC) can be stimulated by pharmacological activation of cAMP-dependent protein ...
متن کاملCyclic AMP potentiates Ca2+-dependent exocytosis in pancreatic duct epithelial cells
Exocytosis is evoked by intracellular signals, including Ca(2+) and protein kinases. We determined how such signals interact to promote exocytosis in exocrine pancreatic duct epithelial cells (PDECs). Exocytosis, detected using carbon-fiber microamperometry, was stimulated by [Ca(2+)](i) increases induced either through Ca(2+) influx using ionomycin or by activation of P2Y2 or protease-activate...
متن کاملA novel ATP-synthase-independent mechanism coupling mitochondrial activation to exocytosis in insulin-secreting cells.
Pancreatic β-cells sense glucose, promoting insulin secretion. Glucose sensing requires the sequential stimulation of glycolysis, mitochondrial metabolism and Ca2+ entry. To elucidate how mitochondrial activation in β-cells contributes to insulin secretion, we compared the effects of glucose and the mitochondrial substrate methylsuccinate in the INS-1E insulin-secreting cell line at the respect...
متن کاملPathways in beta-cell stimulus-secretion coupling as targets for therapeutic insulin secretagogues.
Physiologically, insulin secretion is subject to a dual, hierarchal control by triggering and amplifying pathways. By closing ATP-sensitive K+ channels (KATP channels) in the plasma membrane, glucose and other metabolized nutrients depolarize beta-cells, stimulate Ca2+ influx, and increase the cytosolic concentration of free Ca2+ ([Ca2+]i), which constitutes the indispensable triggering signal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Diabetes
دوره 53 Suppl 3 شماره
صفحات -
تاریخ انتشار 2004